Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis.
نویسندگان
چکیده
Use of metal carbonyl-based compounds capable of releasing carbon monoxide (CO) in biological systems have emerged as a potential adjunctive therapy for sepsis via their antioxidant, anti-inflammatory, and antiapoptotic effects. The role of CO in regulation of mitochondrial dysfunction and biogenesis associated with sepsis has not been investigated. In the present study, we employed a ruthenium-based water-soluble CO carrier, tricarbonylchoro(glycinato)ruthenium (II) (CORM-3), one of the novel CO-releasing molecules (CO-RMs), to test whether CO can improve cardiac mitochondrial dysfunction and survival in peritonitis-induced sepsis. Peritonitis was performed in mice by cecal ligation and perforation. Tumor necrosis factor-alpha, interleukin-10, and nitrite/nitrate plasma levels were tested to evaluate the systemic inflammatory response. Functional mitochondrial studies included determination of membrane potential, respiration, and redox status. Oxidative stress was evaluated by measurements of mitochondrial hydrogen peroxide, carbonyl protein and GSH levels. Mitochondrial biogenesis was assessed by peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha protein expression and mitochondrial DNA (mtDNA) copy number. The systemic inflammatory response elicited by peritonitis was accompanied by mitochondrial energetic metabolism deterioration and reduced PGC-1alpha protein expression. CORM-3 treatment in septic mice restored the deleterious effects of sepsis on mitochondrial membrane potential, respiratory control ratio, and energetics. It is interesting that administration of CORM-3 during sepsis elicited a mild oxidative stress response that stimulated mitochondrial biogenesis with PGC-1alpha protein expression and mtDNA copy number increases. Our results reveal that delivery of controlled amounts of CO dramatically reduced mortality in septic mice, indicating that CO-RMs could be used therapeutically to prevent organ dysfunction and death in sepsis.
منابع مشابه
A Novel Role of Exogenous Carbon Monoxide on Protecting Cardiac Function and Improving Survival against Sepsis via Mitochondrial Energetic Metabolism Pathway
Septic cardiac dysfunction is the main cause of death in septic patients. Here we investigate whether exogenous carbon monoxide can protect cardiac function and improve survival against sepsis by interfering with mitochondrial energetic metabolism. Male C57BL/6 mice were subjected to cecal ligation and puncture to induce sepsis. Exogenous carbon monoxide delivered from Tricarbonyldichlororuthen...
متن کاملCarbon Monoxide Targeting Mitochondria
MITOCHONDRIA PRESENT TWO KEY ROLES ON CELLULAR FUNCTIONING: (i) cell metabolism, being the main cellular source of energy and (ii) modulation of cell death, by mitochondrial membrane permeabilization. Carbon monoxide (CO) is an endogenously produced gaseoustransmitter, which presents several biological functions and is involved in maintaining cell homeostasis and cytoprotection. Herein, mitocho...
متن کاملEffect of Vitamin D3 on Mitochondrial Biogenesis in Granulosa Cells Derived from Polycystic Ovary Syndrome
Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder diagnosed by anovulation hyperandrogenism.Hyperandrogenism increases apoptosis, which will eventually disturb follicular growth in PCOS patients.Since mitochondria regulate apoptosis, they might be affected by high incidence of follicular atresia. This may causeinfertility. Since vitamin D3 has been shown to...
متن کاملQuercetin Induces Mitochondrial Biogenesis through Activation of HO-1 in HepG2 Cells
The regeneration of mitochondria by regulated biogenesis plays an important homeostatic role in cells and tissues and furthermore may provide an adaptive mechanism in certain diseases such as sepsis. The heme oxygenase (HO-1)/carbon monoxide (CO) system is an inducible cytoprotective mechanism in mammalian cells. Natural antioxidants can provide therapeutic benefit, in part, by inducing the HO-...
متن کاملA new activating role for CO in cardiac mitochondrial biogenesis.
To investigate a possible new physiological role of carbon monoxide (CO), an endogenous gas involved in cell signaling and cytotoxicity, we tested the hypothesis that the mitochondrial generation of reactive oxygen species by CO activates mitochondrial biogenesis in the heart. In mice, transient elevations of cellular CO by five- to 20-fold increased the copy number of cardiac mitochondrial DNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 329 2 شماره
صفحات -
تاریخ انتشار 2009